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Abstract—Compared with a single platform, cooperative au-
tonomous unmanned aerial vehicles (UAVs) offer efficiency and
robustness in performing complex tasks. Focusing on ground mo-
bile targets that intermittently emit radio frequency signals, this
paper presents a decentralized control architecture for multiple
UAVs, equipped only with rudimentary sensors, to search, detect,
and locate targets over large areas. The proposed architecture has
in its core a decision logic which governs the state of operation for
each UAV based on sensor readings and communicated data. To
support the findings, extensive simulation results are presented,
focusing primarily on two success measures that the UAVs seek to
minimize: overall time to search for a group of targets and the final
target localization error achieved. The results of the simulations
have provided support for hardware flight tests.

Index Terms—Cooperative, distributed control, localization,
unmanned aerial vehicles (UAVs).

I. INTRODUCTION

S TARTING from early remotely piloted reconnaissance
missions in 1960s, the military role of unmanned aer-

ial vehicles (UAVs) has grown both in relevance and scope.
Currently, UAVs are used in border patrol, police task forces,
weather data collection, search and rescue missions, and a
number of military operations involving intelligence gathering,
surveillance, and reconnaissance.

Traditionally, researchers have strived to develop a single
sophisticated UAV to perform complex tasks. In [1], control
strategies were developed for a single UAV to provide sensory
data, as well as communication between and coordination of
ground units. The efficiency of different trajectory planning
algorithms was compared in [2] for a single UAV approaching
multiple targets in a convex unobstructed space. Moreover, in
[3], multiple images from a single UAV were used to recon-
struct 3-D images of buildings.

Although many single UAV applications can be carried
out successfully through manual operation, only autonomous
systems can provide solutions to some applications, such as
extensive continuous reconnaissance operations lasting weeks
or months [4]. Moreover, several recent independent results in
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Fig. 1. Autonomous UAV platform outfitted with RF and camera sensors.

target search [5], target observation [6], cooperative transporta-
tion [7], and path coordination [8] have made clear that more
complex applications that were beyond the reach of single units
became achievable using multiple systems working coopera-
tively. The emergence of multiple-UAV solutions, such as the
UAV platforms in which we have conducted flight experiments,
shown in Fig. 1, led to an even greater need for flight and
decision automation, due to the long recognized limitations of
manual operation of multiple multitasking UAVs [9].

Considerable work has been performed in the generation of
distributed strategies for searching for targets in vast areas [5],
[10]. However, to our best knowledge, none has considered in-
termittently emitting radio frequency (RF) targets. In this paper,
we propose a novel cooperative UAV control architecture to
search, detect, and localize RF mobile ground targets. Examples
of RF ground mobile emitters in real-world applications include
tracking of ground personnel based on sporadic communication
and the localization of Integrated Air Defense System units.
At the core of the proposed architecture is a distributed deci-
sion logic that each UAV applies to independently determine
its operating state in response to environmental information
gathered from its own sensors and from communicating with
neighboring UAVs.

Within the scope of our solution, two key issues can be iden-
tified. First, an effective search strategy must be decentralized
in execution and cooperative in nature at the same time [11].
In [12], ground mobile platforms search an area using a prob-
abilistic approach that combines the cost of reaching a target
with its impact on the group’s coverage of a search area. In our
approach, each UAV also takes into consideration the desire to
remain distant from other UAVs to maximize coverage and stay
within the boundaries of a search area. In this paper, we isolate
the impact of each of these factors on the overall effectiveness
of the proposed search strategy in a sequence of simulations, in
turn demonstrating their contribution and relevance.
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Fig. 2. Decision state machine for UAV state selection. The numbered events
that trigger each particular directional connector are listed in Table I.

The second key issue rests on the target localization tech-
nique used. Even with the provision in the proposed archi-
tecture to efficiently reacquire a target when the target stops
emitting before being fully localized, the localization accuracy
and speed have a direct impact on the effectiveness of the
overall search and localization task. We explore the bene-
fits of three different techniques for target localization in a
multisensor environment using only an angle-of-arrival (AOA)
sensor information. Namely, we investigate the performance of
triangulation [13], angle-rate [14], and Kalman filtering [15],
[16] techniques.

This paper is organized as follows. Section II details the
proposed cooperative distributed UAV control architecture, fol-
lowed by a description of two key issues: decentralized search
and target localization. Section III explores the proposed decen-
tralized global search (GS) methodology. Section IV describes
the three techniques we used to localize targets using only
AOA data from multiple mobile sensors. Section V presents
encompassing simulation results that demonstrate the capability
of the proposed architecture to search for and localize intermit-
tently emitting mobile targets. We conclude this paper with a
summary in Section VI.

II. COOPERATIVE UAV CONTROL ARCHITECTURE

We have developed a behavior-based distributed control ar-
chitecture [17], [18] to maximize the capabilities of multiple
UAVs to search for, detect, and localize multiple RF emitting
targets. The distributed control architecture dictates that each
UAV governs its own operation through a decision state ma-
chine composed of four states: GS, approach target (AT), locate
target (LT), and target reacquisition (TR). Fig. 2 shows the
state machine, where the decision to change from one state
to another is represented by arrows triggered by the different
events summarized in Table I. It is important to note that only a
limited amount of communication between UAVs and the base
station is required. When in flight, each UAV broadcasts to the
group only its position, its heading, a sensed/estimated target
position (AT and LT only), and a help request when neces-
sary. Completing the list of all communications exchanged in

TABLE I
LIST OF EVENTS THAT TRIGGER DECISIONS TO CHANGE STATES

IN THE DECISION STATE MACHINE OF EACH UAV

flight, the base station broadcasts to all UAVs the estimated
number of targets still left undetected in the field, when-
ever this estimate changes. Although discussing the imple-
mented communication protocol [19] in detail goes beyond the
scope of this paper, the small information exchange demand
allows the assumption of ideal communication between all
members.

A. Global Search

While in the GS state, a UAV flies to detect targets with
an omnidirectional RF sensor. However, since the targets are
mobile and intermittently emitting signals, simply covering the
entire search area once is not sufficient to guarantee target
detection. Instead, we use the concept of dynamic coverage
in a manner similar to the one applied in [20] to measure
the frequency in which different sections of a search area
are scanned. More specifically, in order to maximize target
detection, a team of UAVs involved in a joint search effort seeks
to increase the average visiting frequency of all sections of the
search area in a homogeneous manner (i.e., revisit every section
of the search area with the same frequency).

In addition to these two team goals, each UAV must also
achieve two individual search goals. First, in order to quickly
respond to changes in the number of UAVs involved in the
search effort, and to make it harder for targets to actively avoid
detection, a UAV must not make use of predetermined search
patterns such as lawn-mower serpentine patterns [21]. Second,
due to the limited energy supplies intrinsic to UAV applications,
it is also important that the search pattern generated by a UAV
minimizes the intensity of the UAV’s maneuvers. Although
always in play, this factor is of particular interest when UAVs
search an area since, in practice, lower energy consumption
allows for longer uninterrupted search times.

B. Approach Target

In the AT state, a UAV seeks to move into an orbit around
a detected emitter. We define the orbit as all points with a
user-specified desired radial distance from the estimated emitter
location around which UAVs can fly safely. A UAV may change
its operational state from GS to AT if it detects an emitter
currently not detected by any other UAVs (Event 1 in Table I) or
if it decides to stop contributing to the GS and lend assistance to
an ongoing target localization effort (Event 2). A UAV decides
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to help a localization effort being conducted by other UAV(s)
when the help cost CH , given in (1), becomes negative

CH = w1De − w2(cmax − c) + w3(fmax − f) (1)

where De stands for the normalized estimated Euclidean dis-
tance from the current UAV location to the emitter. The desired
maximum number of UAVs to cooperatively locate a target
is denoted by cmax, while c stands for the number of UAVs
already committed to a particular emitter localization effort. In
the third term, fmax stands for the total estimated number of
emitters in the search space, and f stands for the number of
emitters that have already been detected or located. If fmax is
not known with precision, an expected number can be used.
In most cases, it is advised to overestimate the total number
of emitters to ensure that not too many UAVs will stop con-
tributing to the GS effort before all emitters are found. Finally,
the wi’s are weights an operator can assign to influence the
behavior of the UAVs, allowing for problem-specific solutions.
Note that this cost function is a result of the inherent tradeoff
between remaining in GS and therefore increasing the collective
search capability, against committing to increase the speed and
accuracy of localizing a single emitter.

In the same manner as a UAV operating in GS that switches
its state to AT when CH becomes negative, a UAV may return
to the GS state if the help cost becomes positive due to the
actions of other UAVs (Event 5). A UAV also returns to the GS
state if the target of interest stops emitting (Event 4) while the
UAV is approaching the target. Provided that the cost remains
negative, the UAV switches its operating state to the LT state
when it reaches the target’s orbit (based on its current estimated
position; Event 3).

C. Locate Target

A UAV operating in the LT state orbits around the estimated
emitter position, while taking new sensor readings. The current
implementation allows up to three UAVs to join in the effort to
locate an emitter, providing simultaneous AOA sensor readings
from different viewpoints. Techniques such as triangulation, an
angle-rate algorithm, and Kalman filtering are used to increase
the accuracy of the target localization process by combining
information provided by different UAVs and sensor data col-
lected at different moments in time. Once a target is accurately
located, all UAVs orbiting the target return to the GS state
(Event 6). Otherwise, if a target stops transmitting, all UAVs
orbiting the target switch to the fourth state, which is TR
(Event 7).

D. Target Reacquisition

TR is a state that is only reached by orbiting UAVs operating
in LT when their target emitter stops transmitting before the
emitter is accurately located. UAVs operate in one of two phases
within the TR state.

During the initial phase, UAVs continue to orbit around the
last estimated emitter position with an increasing orbit radius
over time. The resulting flying path is a growing spiral with
a rate of expansion dictated by the estimated emitter’s maxi-
mum speed and the last two readings of the estimated emitter

Fig. 3. Simulation snapshots. The top-left frame shows the initial locations of
(large circles) six UAVs as they start under the GS state to search for (small
circles) three targets. The top-right frame shows a target (at the bottom of the
frame) being detected by a UAV, which assumes the AT state and transmits to
nearby UAVs its discovery. Upon receiving the target discovery information, the
nearby UAVs determine whether to help localize the target. The frame shows
that two of the nearby UAVs have decided to join the efforts. In the bottom-left
frame, two UAVs are now close enough to the target to assume the LT state and
start orbiting it. The bottom-right frame shows that the bottom target has been
accurately located, and the three involved UAVs return to the GS state.

location. Once a predefined time period has passed without a
reacquisition of the target, UAVs operating in TR enter into the
second phase.

In the second phase, UAVs perform a local search similar
to the GS, except in a limited area around the emitter’s last
estimated position. If an emitter is still not detected after a
user defined maximum amount of time, the associated UAVs
discontinue the local search and switch to operate in the GS
state (Event 9). A TR effort is successful if, during one of the
two phases, an emitter is detected. In this circumstance, the
UAVs switch back to the AT state (Event 8).

A simulation output illustrating the typical UAV states and
cooperative synergistic behaviors can be seen in Fig. 3. In
this simulation, we assume that each UAV possesses a Global
Positioning System sensor to determine its location, which is
shared with other nearby UAVs, and only a rudimentary AOA
sensor for sensing target locations. The RF signal emitted by
the target is assumed to be omnidirectional, and the actual
emission is intermittent, with random on and off times. The
same simulator is used in the remainder of this paper with slight
variations to size of the search areas and UAV characteristics in
order to focus on matters relevant to each section individually.
Further details of its characteristics are given in the appropri-
ated sections.

III. COOPERATIVE SEARCH

As a distributed control system, cooperative search patterns
must be generated by the actions taken by each UAV individu-
ally based only on locally available information. Therefore, in
our proposed search algorithm, each UAV seeks to achieve both
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team and individual goals by evaluating different maneuvering
options under the search cost CS shown in the following, which
combines the group’s dispersion pattern, the search history of
the UAV’s immediate neighborhood, and the fuel consumption
necessary for each particular maneuver:

CS = Hx,y

(
1∑
(Di)

+
1∑
(Dj)

)
|ΔφUAV| (2)

where Hx,y corresponds to a numerical value representing the
explored history of a location indexed by x, over an east–west
axis, and y, over a north–south axis. The history matrix H (i.e.,
a history map) is generated and maintained by each UAV by as-
signing to each cell, mapped to a small subregion of the search
area, the maximum value of one when a team member scans it
with its sensor(s) and constantly decrementing the entries in all
cells by a small value over time in order to represent the deteri-
oration of information with the passage of time. The sum of the
distances from a UAV to its peers and the sum of the distances
between a UAV and the search area boundaries are represented
by

∑
(Di) and

∑
(Dj), respectively. Finally, the change in

the heading angle required to reach a particular location is
represented by ΔφUAV. By evaluating CS in different locations
around its current position, a UAV continuously flies in the
direction of the location with the minimum search cost. Note
that, although

∑
(Di) adds the intentionality of dispersion to

the cost function CS , it does not guarantee collision avoidance.
In practice, this issue is dealt with by having the cooperating
UAVs operate at different altitudes.

The proposed search strategy based on the evaluation of
CS has as it primary goals as follows: 1) to increase the
rate at which it revisits each area; 2) to reduce the variability
of the visitation frequency across the entire search area; and
3) to minimize energy consumption by reducing the number and
intensity of maneuvers performed by the UAVs. To demonstrate
the role of the four components that make up the proposed
CS , we now present a number of cost functions composed of
combining the four components incrementally. In Section V,
we show the statistically supported simulation results.

The first most basic component of the search cost reflects
a UAV’s intention to simply remain within the search area.
The first search cost function C1

S only assigns nonzero costs
to areas outside the search area, making a UAV fly in a straight
trajectory, maneuvering only when necessary to remain within
the search area. Since this reaction is the minimum necessary
for a team to achieve measurable values for the three goals,
the results of the simulations based on C1

S are treated as the
baseline for comparison with the other costs in Section V.

In the second search cost function, we add the intention of a
UAV to navigate to an area that has not been visited for the
longest time, as stored in the search history matrix H . This
intention, coupled with higher costs associated with areas closer
to search boundaries, forms C2

S , as shown in (3). For the third
cost function, we add the concept of cooperative search area
coverage to the search cost by increasing the cost of destinations
closer to other cooperating UAVs. As shown in (4), this is done
in C3

S through the insertion of the term related to
∑

(Di), where
Di denotes the distance from a UAV to its ith neighbor. Finally,

C4
S described in (5) incorporates all proposed components,

being equal to the initial CS

C2
S = Hx,y

(
1∑
(Dj)

)
(3)

C3
S = Hx,y

(
1∑
(Di)

+
1∑
(Dj)

)
(4)

C4
S = Hx,y

(
1∑
(Di)

+
1∑
(Dj)

)
|ΔφUAV|. (5)

In order to measure the impact of each search cost over the
three stated goals, the following metrics were used. To measure
the average frequency at which any given point in the search
area is visited, the dynamic coverage (dc) of the search area is
measured through the following by obtaining the average value
of the cells of the history matrix of the search area H:

dc =

∑
x

∑
y Hx,y

N
(6)

where N corresponds to the total number of cells in the
matrix H .

To measure the variability, or heterogeneity, of the coverage
effort, the standard deviation of the cells of the history matrix
at a given time σH is calculated using (7). Note that, the more
uniform the search is, the smaller the standard deviation of the
coverage in the history matrix, and therefore, the goal is to
design a search strategy that leads to minimum heterogeneity

σH =

√∑
x

∑
y(Hx,y − dc)2

N
. (7)

Finally, the amount of energy required by a team to search
an area is measured by the total amount of turns, in degrees,
involved in all maneuvers conducted by the cooperating UAVs
while inside the search area (in this manner, eliminating the
impact of the maneuvers required simply to remain inside the
search area). Section V shows the simulation results.

IV. COOPERATIVE LOCALIZATION TECHNIQUES

In this section, we describe three different cooperative local-
ization techniques that we implemented for the LT state: trian-
gulation, angle-rate algorithm, and Kalman filtering. All three
techniques can be used with one or multiple sensor platforms.
If only a single mobile platform is used when the triangulation
technique is employed, the target must be stationary. For mobile
targets, the triangulation of synchronous readings is used only,
and therefore, the accuracy of the triangulation technique is
limited to the number of sensor platforms and does not improve
with time. The angle-rate algorithm is normally limited to lo-
cate stationary emitters when a single mobile platform is used,
and compared to the triangulation technique, it is capable of
achieving better performance in small included angle scenarios.
Finally, Kalman filtering techniques are capable of gradually
increasing the localization accuracy of stationary and mobile
emitters, independent of the number of sensor platforms used.
However, Kalman filters require a priori knowledge of the
emitter’s dynamic behavior and the stochastic characteristics of
the sensors used.
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Fig. 4. Approach to avoid poor estimates for the triangulation localization
technique. The quadrilateral bounding box is used to filter out poor estimates.

A. Triangulation

The directional sensor mounted on each UAV provides an es-
timated angle φi to the target with respect to a fixed coordinate
frame onboard a UAV, at time k for each estimate i. The UAV
position with respect to a world coordinate frame is denote as
(xi, yi). The distance to a target is unknown but is bounded
by the maximum sensor range Rs. Given two UAVs within Rs

of the target or one UAV with two estimates close in time, we
can triangulate the target location based on the two estimates
by simply finding the intersection of the two lines defined by
the estimates. When we have three estimates to triangulate
(due to three UAVs or one UAV over time), we triangulate
between each pair of the three estimates. We then estimate the
target location from the centroid of the triangle defined by these
three points.

Triangulation is known for producing poor estimates when
the two UAVs produce measurements with very similar slopes.
Such measurements occur when either two UAVs are flying
close to each other or a single UAV takes one sensor reading
shortly after another. Due to their sensor error, instead of the
triangulation point being near the target, the almost parallel
lines can result in an intersection far beyond the range Rs or
they can even diverge, resulting in an intersection point in the
wrong direction, as shown in Fig. 4. To avoid these extreme
cases, we test to see if the triangulation point is inside of
a bounding quadrilateral defined by the two UAV locations
(xi, yi) and the points (x_ maxi, y_ maxi) along the angle to
the target φi at the maximum sensor range Rs. If the resulting
target estimation lies inside this quadrilateral, the triangulation
estimate is accepted. If the estimation lies outside of the quadri-
lateral, we can instead estimate the location to be the median
point between the UAV positions and the other two quadrilateral
vertices (x_ maxi, y_ maxi).

B. Angle-Rate Algorithm

When the slopes of the measurements of two or more UAVs
are similar, sometimes referred as having small included angles

Fig. 5. Basic UAV and target geometry.

between angle measurements or large geographic dilution of
precision (GDOP) conditions, the angle-rate algorithm renders
improved localization results than the ones obtained using the
triangulation technique, as we will show in Section V. The
following two factors make large GDOP conditions likely to
occur in our problem of interest: 1) Each sensor is mounted
on a slowly moving UAV that prevents it from significantly
changing its relative position from one sensor measurement to
the next and 2) intermittently emitting targets can stop emitting
before the cooperating UAVs have time to improve their relative
positions.

Recall that, for a rotating object, the tangential velocity is
equal to the angular velocity multiplied by the distance to
the axis of rotation. We can compute the range to the target
once we obtain the angle rate [i.e., r(dθ/dt) = (dy/dt)] if
the included angle is small. For a general case, we need
to use trigonometrical identities [i.e., tan(θ) = (d/range)]
to compute the range values. For the geometry described in
Fig. 5, the emitter’s calculated range is one half of the UAV’s
y-distance traveled (d) divided by the tangent of one half of the
included angle (θ). To compute the included angle accurately,
we find the average AOA, average AOA rate, and average
included AOA that are obtained from the linear least square
regression of the measured AOA data. Once we find the average
AOA, we compute the average AOA rate and, subsequently, the
desired average included AOA to compute the tangent range.

The emitter location’s calculated y-value, or cross-range,
is the UAV’s average y-value added to the emitter’s range
multiplied by the tangent of the average included AOA [i.e.,
ŷ + r tan(θ)]. Note that using the average AOA obtained via
linear regression instead of a tangent regression curve adds a
bias to the range estimate. For small included angles where
tan(α) ≈ α, the bias is negligible.

C. Kalman Filter

Kalman filtering is used as a model-based observer to gen-
erate minimum covariance localization estimates based on the
sensor measurements of multiple UAVs over time. In order to
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apply the Kalman filter, the first step is to model our RF target
localization problem with the following difference equation:

x[k] = Ax[k − 1] + Bu[k] + w[k − 1] (8)

where x[k] ∈ R4 denotes the position and velocity of the target
at time k, u[k] is the forcing function, and w[k] is the process
Gaussian white noise with mean value zero and covariance
matrix Q. Matrices A and B relate the previous time state and
inputs with the current time state, describing the characteristics
of the target’s dynamic system. We assume that our sensors can
measure only the position of a target as shown as follows:

yi[k] = Cix[k] + vi[k]. (9)

Matrix Ci denotes the measurement matrix, yi[k] ∈ R2 is the
position measurement at time k, and vi represents a Gaussian
white measurement noise with zero mean and covariance
matrix Ri for the sensor on UAV i. We can model a directional
sensor by appropriately selecting the contents of covariance
matrix Ri. We also assume that the process and measurement
noise are independent of each other.

Given the target and sensor models, the task of target
location transforms into a problem of minimizing the corre-
sponding error covariance, where an error denotes the differ-
ence between an estimated position and the true target position.
For a more formal and complete description of the filter, the
reader is directed to [22]. In essence, the optimal filtering
algorithm uses the time and measurement update equations to
predict and update the error covariance of a target as new sensor
measurement is acquired. The localization task then becomes a
recursive process to reduce the error covariance.

V. SIMULATION RESULTS AND ANALYSIS

We now present three different simulation results that
demonstrate the capability of teams of UAVs to accomplish
the entire mission of searching for and localizing intermittently
emitting mobile targets over large areas. Section V-A
presents the results validating the search strategy presented in
Section III, followed by the target localization results using the
triangulation, angle-rate, and Kalman filter algorithms illus-
trated in Section IV. In this section, we also identify preferred
regions to use the triangulation and angle-rate algorithms.
Section V-C is dedicated to present the overall performance
of multiple UAVs searching, detecting, and locating ground
targets.

A. Impact of the Components of the Proposed Search Strategy

Results in this section were obtained by simulating a team
of four UAVs, randomly initialized inside a 4 km × 4 km
search area operating for 1 h using the C1

S , C2
S , C3

S , and C4
S

cost function strategies while measuring the following three
metrics: 1) dynamic coverage dc; 2) heterogeneity σH (i.e.,
search variability); and 3) the amount of UAV maneuvers. All
UAVs were set to a cruise speed of 65 km/h with a maximum
allowed turn rate of 2◦/s, modeling typical responses of small
fixed wing aircraft. Each UAV’s model is outfitted with sensors
with a radial maximum range of 400 m and a sensing interval of

TABLE II
SIMULATION RESULTS AT THE END OF 1 H FOR SEARCH CONDUCTED

ACCORDING TO EACH CS COMPLETION LEVEL. RESULTS

IN MEAN (STANDARD DEVIATION) NOTATION

Fig. 6. Average dynamic coverage of teams of four UAVs subject to different
levels of completion of the search cost CS .

2 s. To account for the variability of the results, 50 simulation
runs were performed for each search cost strategy with the final
results listed in Table II. All results were evaluated by pairs
against the null hypothesis of equal means (α = 0.05) using the
standard t-test when the equal variance hypothesis could not be
rejected (α = 0.1) or using the Satterthwaite’s approximation
to the t-test otherwise.

The average evolution of the dynamic coverage, which is
the first metric used to evaluate the proposed search algorithm,
during the 1 h of simulation can be seen in Fig. 6. As expected,
search using C2

S , C3
S , and C4

S performs significantly better than
the baseline one using C1

S . On a closer analysis between the
top three performers, the results indicate that the addition of the
component that creates a repelling force between team mem-
bers introduced in C3

S outperforms C2
S with a comparatively

less drastic yet statistically significant (p < 0.001) higher mean
at the end of the simulation. On the other hand, the addition
of the component that forces UAVs to reduce the intensity
of maneuvers in C4

S resulted in an inferior average response
compared to the one by C3

S , but still more successful than
that of C2

S . At the end of the simulation, the average dy-
namic coverage achieved using C4

S was significantly smaller
(p = 0.017) than that of C3

S , but did not present a significant
difference (p = 0.116) from that of C2

S .
Fig. 7 shows the results pertaining to the second metric,

which is the minimization of the heterogeneity σH of the
search. Although these are independent measures, the results
are similar to the ones for the dynamic coverage, with search
using C2

S , C3
S , and C4

S outperforming the baseline, and the
average response of C4

S remaining between that of C2
S and

Authorized licensed use limited to: Air Force Institute of Technology. Downloaded on June 3, 2009 at 09:01 from IEEE Xplore.  Restrictions apply.



PACK et al.: COOPERATIVE CONTROL OF UAVs FOR LOCALIZATION OF EMITTING MOBILE TARGETS 965

Fig. 7. Heterogeneity levels achieved by teams of four UAVs under different
levels of completion of the search cost CS . Lower levels indicate greater
homogeneity of the search effort.

C3
S during almost the entire simulation time. On the other

hand, all final search costs present significantly different means
(p < 0.001 for all pairs, except for the comparison of the means
of C3

S and C4
S , which presented p = 0.046), with the mean

value of the heterogeneity obtained by C4
S closer to that of C3

S

than to that of C2
S .

Finally, the results for the total fuel consumption while
within the search area shown in Table II bring four significantly
different (p < 0.001 for all pairs, except for the comparison
of the means of C2

S and C3
S , which presented p = 0.011)

outcomes. Note that, since the baseline C1
S , by construction,

does not perform maneuvers while within the search area, it
represents the minimum fuel consumption for this measure,
receiving zero value. It is noteworthy to point out that the
improved results achieved by using C3

S over C2
S on the other

two metrics were not reached at the expense of greater fuel
consumption, as observed by the small, yet statistically signif-
icant, difference between their final compounded maneuvers.
More importantly, the results obtained by using C4

S , which is
the complete proposed search cost, show that less than half of
the total degrees of maneuvers were performed by the UAVs
compared to the ones recorded when C2

S or C3
S was used.

Although the exact relationship between the characteristics of
the maneuvers and the ultimate flight autonomy is aircraft
dependent, it is possible to state that a drop of such intensity
on the UAVs maneuvers has a significant impact on the flight
time of a UAV capable of uninterruptedly searching an area for
targets.

In summary, the incremental addition of the four basic
components has shown that allowing UAVs to make use of
the information contained in H has the greatest impact on
dynamic coverage and heterogeneity but requires the largest
amount of energy to be expended. Adding to the UAVs, the
intention to keep distance from other cooperating UAVs, in
the manner formulated in the proposed search cost strategy,
leads to a smaller, yet significant, improvement on all three
metrics, making this an improvement without any detrimental
effect. Finally, the completion of the proposed search cost
with the inclusion of the intention to reduce the magnitude

Fig. 8. FOM for included angles from 0◦ to 60◦.

of the maneuvers of each UAV results in a slight reduction of
the dynamic coverage and heterogeneity gains achieved by the
addition of the previous factor, which is a comparatively small
price to pay for the resulting great drop in energy consumption
which, in practice, allows search missions to be carried out for
longer periods of time.

B. Target Localization

In this section, we compare target localization results when
the triangulation and angle-rate localization techniques are used
by multiple UAVs, describing conditions where one technique
outperforms the other. Next, we show target localization results
when Kalman filtering techniques are used.

1) Triangulation and Angle-Rate Techniques: To compare
the triangulation and angle-rate algorithms, we varied the num-
ber of measurements and the included angle values. By keeping
the noise constant with a covariance of one, we collected the
accuracy data as we varied the number of measurements from
3 to 101 and the included angle from 0.5 to 60◦.

The along-range error (x-axis in Fig. 5) is the dominant
term in the error calculations, since the along-range error cor-
responds to the semimajor axis of the error probable, and for
large GDOP, our error is highly elliptical. When comparing the
performance of the two algorithms, we used only the square
of the along-range error since the cross-range error (y-axis in
Fig. 5) was much smaller in magnitude. The figure of merit
(FOM) we used to compare the algorithms’ performance is

FOM =
σ2

along−range−angle rate

σ2
along−range−triangulation

(10)

where σ represents the standard deviation of the error.
In (10), FOM less than one means the angle-rate algorithm

resulted in a smaller average error, while FOM greater than
one means the triangulation algorithm resulted in smaller aver-
age error.

Fig. 8 shows a 3-D plot of the FOM versus included angles
ranging from 0◦ to 60◦ and number of measurements ranging
from 3 to 101. Also shown in the graph is a FOM plane which
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equals one. All points on the graph above this plane were for
cases in which the triangulation algorithm had a smaller error,
while all points below this plane are for cases in which the
angle-rate algorithm had better error performance.

From our analysis, we conclude that the angle-rate algorithm
performs better than the standard triangulation algorithms once
the number of measurements exceeds ten and the included angle
is greater than 2◦. On the other hand, when the included angle
grows beyond 40◦, the error using the angle-rate algorithm
increases due to the tangent function producing significant
approximation errors at these higher angles. The results show
that the angle-rate emitter localization algorithm is a better
choice over direct triangulation for small included angle AOA
applications common to GDOP environments.

2) Kalman Filter Techniques: The primary purpose for us-
ing Kalman filtering techniques is to incorporate multiple sen-
sor values of a stationary or moving target obtained over a
time period, which is a problem significantly different from the
triangulation and angle-rate algorithms we just presented. We
envision that the Kalman filtering techniques, performed within
one of the UAVs or at a ground unit, can be combined with
one of the two aforementioned localization techniques to render
better target localization accuracy.

Due to the capability of a Kalman filter to incorporate
sensor measurements obtained from different perspectives and
at different times, we demonstrate that a sensor measurement
sequence and a sensor configuration have a direct impact on the
ability to accurately locate a target.

We performed experiments each with a total of 100 available
observations and up to ten different UAVs orbiting around the
initial estimated position of a target. The choice of 100 total
measurements ensures that the filter has sufficient iterations
to converge. We varied three primary variables to explore the
performance of the Kalman filtering approach in 12 different
cases. The primary variables were as follows: 1) the type of
sensors available on each UAV; 2) the configuration or spacing
of the sensors in the orbit around a target; and 3) the scheduling
sequence or order in which each UAV collects data on the
target’s location for the Kalman filter.

For the first variable, type of sensors, there were three
different options for the UAVs: 1) All UAVs have the same
low-quality sensors (noise covariances of 0.13 along range and
0.65 cross-range); 2) all UAVs have the same high-quality
sensors (noise covariances of 0.1 along range and 0.5 cross-
range); or 3) a mix of low- and high-quality sensors randomly
distributed among UAVs, with an equal probability of each type
of sensor to be chosen. Note that both sensor types possess
Gaussian asymmetrical error distributions, as is characteristic
of most airborne localization sensors.

The second primary variable, which is the configuration of
the sensors in the search orbit, took one of two possibilities.
The sensors were either uniformly distributed in a formation
spanning the 360◦ of the orbit, which we refer to as a full orbit
configuration, or they were uniformly distributed around 180◦

of the orbit, similarly referred to as a half orbit configuration.
The second option may offer some advantages over the first
by eliminating redundant measurements when two sensors are
directly opposite of each other in orbit about a target.

The third primary variable was the scheduling sequence with
two possible variations: 1) The sensor observations could be
scheduled in order as one moves through the search orbit,
so that adjacent sensors make observations in sequence, and
2) the sensors could be scheduled randomly among all available
sensors.

With three sensor options, two configuration options, and
two scheduling options, there were a total of 12 different cases
to explore through simulation. For each of the 12 cases, we
also varied the number of sensors involved in the search from
one to ten, generating a total of 120 scenarios, each conducted
500 times to provide statistically sound mean estimates. For
each simulation, the number of sensors observing a target re-
mained constant, even though in an actual situation, the number
would vary as UAVs join and depart a group involved in the
orbit during the localization period. Note that, regardless of the
number of sensors available for each scenario, the Kalman filter
had access to a total of 100 observations during the simulation.
Certainly, the number of observations increases in a given
time with more UAVs if each UAV’s sensing period is equal;
however, the primary goal is not to compare the performance
over time but over an equal number of observations as we
vary the sensor configuration. Moreover, by the end of all
simulations, the Kalman gain of the filter had already converged
to a very small number, making the impact of any additional
measurements negligible. Ultimately, we seek to investigate
whether a set of inferior sensors configured and scheduled
appropriately can outperform a set of sophisticated sensors if
the total number of sensor readings is fixed in locating a target
using Kalman filter estimation techniques. Results for the study
of the impact of additional sensors over a fixed time window
can be found in [23].

Fig. 9 shows the simulation results. Each frame within Fig. 9
contains three lines representing the different sensor options
(all high-quality, all low-quality, and a random mix of high-
and low-quality sensors). The standard deviations of the plotted
means were less than 0.59 for sets of good sensors, less than
0.44 for sets of bad sensors, and less than 0.60 for mixed sets.
The results shown in the figure should be viewed as follows.
To see the effects of the UAV configurations on the localization
performance as we add more UAVs to locate a target, observe
how the cost varies along the x-axis for each frame. The
cost is defined as the sum of the corresponding covariance
matrix trace values across all filter updates from the 100 sensor
measurements. To compare the performance of sensor positions
that are equally distributed around the entire orbiting circle
versus only the half of the orbiting circle, compare the same
line (solid, dash–dotted, and dotted) between two vertically
adjacent frames, such as frames (a) and (c). To see how different
scheduling schemes affect the overall target localization per-
formance, compare each line (solid, dash–dotted, and dotted)
between two horizontally distributed frames, such as frames (c)
and (d).

In all cases, introducing high-quality sensors into the lo-
calization problem reduced the total cost, as expected, which
indicates that the Kalman filter produced a more accurate
estimate of the target’s location. However, note that, with
effective sensing schedules, even if (solid lines) all bad sensors

Authorized licensed use limited to: Air Force Institute of Technology. Downloaded on June 3, 2009 at 09:01 from IEEE Xplore.  Restrictions apply.



PACK et al.: COOPERATIVE CONTROL OF UAVs FOR LOCALIZATION OF EMITTING MOBILE TARGETS 967

Fig. 9. Simulation results plotting the total covariance cost versus the number of sensors. The displayed mean values are the results of 500 simulations each.
The solid lines represent simulations with only low-quality sensors, the dashed lines represent simulations with only high-quality sensors, and the dash–dotted
lines represent simulations with a mix of high- and low-quality sensors with an equal probability of each sensor type. Cases (a) and (b) position the UAV sensors
uniformly about a 360◦ orbit around the target’s estimated position. Cases (c) and (d) position the UAV sensors uniformly about a 180◦ half orbit centered on the
target’s estimated position. Cases (a) and (c) use a sequenced scheduling where the UAVs observe the target in order as you move around the orbit. Cases (b) and
(d) use a random scheduling where the next observation is selected at random from the available positions.

or (dash–dotted lines) a mixture of bad and good sensors
are used, they can outperform the results obtained by using
exclusively (dashed lines) good sensors. For example, consider
the final localization accuracy values when seven UAVs are
deployed in frames (a) and (b). The cost of the sequential order
with bad sensors (2.36) outperforms that of the random order
results with good sensors and a mixture of bad and good sensors
(2.55 and 2.92, respectively). Certainly, if the bad sensors were
to have been chosen to have an even greater uncertainty, at a
certain point, the change in the ordering of the data would not
have made them the most desirable choice, but even then, the
choice of the sequencing pattern would still have a measurable
impact on the filter’s efficiency.

In addition to showing that it is possible to achieve better
results with relatively bad sensors over those obtained using
good sensors in suboptimal configurations, three additional
conclusions can be drawn. First, the order of sensing a target
is important. Given the same number of sensors, the sensor
locations, the type of sensors, and the number of sensor read-
ings, the sensor schedule, which is a factor that can typically be
easily controlled, plays a significant role in the final outcome of
the target location error. One can see this by picking a number

of sensors in paired frames (a) and (b), or (c) and (d) and
comparing the final accumulated location errors. For example,
if one compares the dash–dotted lines (representing the use
of low- and high-quality sensors) when only three sensors are
used in a 180◦ configuration, the sequential and random orders
produce final costs of 2.75 and 3.24, respectively, which is a
significant (α = 0.01) difference that addresses the need for
a “smart” sensor scheduling. Second, the sensor configuration
is important. Again, given the same number of sensors, the
type of sensors, the number of sensor readings, and the sensor
schedule, the placement of sensors has direct impact on the
final target localization result. One can observe this point by
comparing frames (a) and (c). Suppose you have only two
sensors at your disposal, the solid lines (representing the use
of low-quality sensors only) in frames (a) and (c) show the
final target location error values of approximately 3.66 and
2.37, respectively. Physically, in this case, it means that its
better to place two sensors at a 90◦ angle rather than placing
them facing each other. Finally, a higher number of sensors
without considering the sensor schedule and configuration do
not translate to a better target localization performance. One can
see this last finding by comparing the final cost values within
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Fig. 10. Plot of the average number of UAVs cooperating for each localization
estimate when the number of UAVs changes from three to nine and the number
of targets changes from one to nine.

Fig. 11. Plot of the average localization error in kilometers when the number
of UAVs changes from three to nine and the number of targets change from one
to nine using a 1◦ accurate sensor.

each frame or across multiple frames. For example, consider the
dashed line in frame (a). Clearly, the performance increases up
to four sensors (cost of 1.85) but does not get any better as one
adds additional sensors until one reaches a second minimum at
seven sensors (cost of 1.78).

C. Search and Localization Joint Performance

In this section, we present the overall performance of mul-
tiple UAVs as we vary the ratio of the number of UAVs
to the number of targets. One hundred simulation runs were
conducted for each combination of three, six, or nine UAVs,
and one, three, six, or nine targets. The initial target and UAV
locations were randomly selected in a 50 km × 75 km area.
The UAVs flew in a velocity range between 115 and 260 km/h
(cruise at 115 km/h) with a minimum turn radius of 0.5 km.
The targets traveled in random directions for random distances
with a maximum velocity of 38 km/h. The targets emitted
signals randomly for an average of 6.8 min and were silent
for an average of 4.8 min. The sensor mounted on the UAVs

Fig. 12. Plot of the average localization error in kilometers when the number
of UAVs changes from three to nine and the number of targets changes from
one to nine using a 7◦ accurate sensor.

Fig. 13. Plot of the average total search/localization time in minutes when
searching a 50 × 75 km area as the number of UAVs changes from three to
nine, and the number of targets changes from one to nine.

provided AOA estimates every 12 s. For the sake of comparison,
we ran simulations using sets of directional sensors with 1◦

and 7◦ accuracy. The maximum sensor range was assumed
to be 4.3 km, and during LT, the UAVs flew at an orbit
of 2.2 km from the estimated target location. The triangu-
lation technique discussed in Section IV was used, with the
localization process for a specific target continuing until the
target stopped emitting. Since the emitters can turn off at any
moment, quite often, the ideal number of UAVs and proper
geometry was not achieved before the localization estimate was
finalized.

Fig. 10 shows the tradeoff between the number of UAVs op-
erating in the cooperative target localization stage and the over-
all GS. As expected, the best localization cooperation (more
than 2.5 UAVs per localization effort) was achieved when nine
UAVs faced only one target, while the cooperation reduced as
the ratio changed down to three UAVs versus nine targets. The
amount of cooperation had a positive impact on the localization
accuracy, as seen in Figs. 11 and 12. For the sensor with 1◦

accuracy, the average error for three UAVs versus nine targets
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was greater than 0.4 km, and the error was reduced to 0.16 km
when nine UAVs are used to locate one target. For the sensor
with 7◦ accuracy, with three UAVs locating nine targets, the
average error was 0.57 km, while the average error was reduced
to 0.38 km with nine UAVs locating one target. Fig. 13 shows
the total time spent on search and localization. As expected, the
best time (19 min) occurred when nine UAVs faced only one
target; the time increased up to 174 min when three UAVs faced
nine targets.

VI. CONCLUSION

In this paper, we introduced a novel decentralized coop-
erative control architecture for the tasks of searching, de-
tecting, and localizing mobile ground targets intermittently
emitting RF signals, where each UAV determines its ac-
tions based on its sensor information and the data shared
among neighboring UAVs. Particular focus was given to the
proposed search strategy that was demonstrated to generate
efficient cooperative search patterns based exclusively on a
search cost computed by each UAV. The beneficial impact
of each element of the search cost function toward the over-
all collective goals was demonstrated with proof-of-concept
simulations.

To deal with mobile ground targets that intermittently emit
signals, a special focus was also given to the localization
techniques to efficiently integrate the information of multiple
AOA sensors over time. In particular, we compared the local-
ization outcomes when we applied triangulation, the angle-rate
algorithm, and Kalman filtering techniques. The angle-rate
algorithm was shown to be more suited than the triangulation
method for the small included angle cases common to tar-
get localization from a single UAV orbiting an emitter. With
the tradeoff of additional computational requirements, Kalman
filtering, which, in addition to position estimation, provides
covariance estimation, was further investigated with simulation
results demonstrating the effects of sensor locations, types, and
scheduling techniques. The results of the investigation indicate
that a structured scheduling approach can improve the quality of
the target position estimates. When comparing the localization
performance based on the overall configuration options, we
found that orthogonal positioning of the sensors on a half orbit
produced optimal results. Work is currently underway on an
approach that combines elements of the three techniques to
generate a localization technique that is accurate and robust in
all circumstances.

Finally, we presented results demonstrating the cooperative
search and localization capabilities of multiple UAVs and tar-
gets. With detailed results published in [24], we have success-
fully applied the conclusions reached in this paper to hardware
flight tests involving UAV platforms.
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